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An active problem in digital geometry processing is shape interpolation which aims to generate a
continuous sequence of in-betweens for a given source and target shape. Unlike traditional approaches
that interpolate source and target shapes in isolation, recent data-driven approaches utilize multiple
interpolations through intermediate database shapes, and consequently perform better at the expense
of a database requirement. In contrast to the existing data-driven approaches that consider interme-
diate shapes as full inseparable entities, our novel data-driven method treats the shapes as separable
parts. In particular, we interpolate parts over different intermediate shapes and merge them all in the
end, which brings more flexibility and variety than the existing ways of interpolating the full shape
as a whole over one fixed set of intermediates. To be able to proceed consistently over different sets
of intermediate shapes, we construct a unified framework based on parametric curves. We justify
the two key points in the proposed method, interpolating parts separately and data-driven by curve
parameterization, in the qualitative and quantitative evaluations. We demonstrate promising results in
comparison with five other techniques. Our method morphs not only poses but also forms, e.g., turning
one person to another. The results are improved further with a mild data augmentation procedure that
is based on the original algorithm. As a side contribution, we provide a public articulated hand dataset
with fixed connectivity, which can be used in the evaluation of other interpolation methods.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Shape interpolation is an important problem in computer
raphics. It has many application areas ranging from key frame
nimation to content creation. In the interpolation problem, given
source model and a target model, the goal is to create a smooth
ransition of in-between models that are both physically plausible
nd geometrically sound.
The simplest interpolation technique is the linear interpo-

ation. Given two shapes represented as mesh structures with
corresponding vertices denoted by vk

1 and vk
2, the resulting

nterpolated mesh can be expressed as:
k
result = αvk

2 + (1− α)vk
1, 0 ≤ α ≤ 1, 1 ≤ k ≤ n, α ∈ R, k ∈ N (1)

t is possible to create as many interpolated meshes as desired by
pdating the α value. Note that the fixed connectivity between
he first two meshes is maintained in the resulting mesh.

This scheme and its more sophisticated variants tend to pro-
uce artifacts such as self-intersections and unnatural poses in
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the result mainly because of the fact that two arbitrary input
shapes to be interpolated are too dissimilar from each other.

A data-driven approach, [1] for instance, has the potential
to solve this problem by inserting intermediate database shapes
between two dissimilar input shapes. In particular, a data-driven
approach uses a set of smooth transitions between similar shapes
that connect the source input to the target input which were
dissimilar in the first place. The main drawback of data-driven
approach is the demand of extra database shapes, whereas the
main advantage is the increased accuracy.

Data-driven methods differ mainly by the way they perform
the interpolation between two similar intermediate shapes. Since
the expressiveness of this line of methods is limited with the size
of the used database and also the variation within the database,
there is no perfect way to define the similarity, and hence the
interpolation scheme.

We improve these data-driven methods by bringing more
variety over the same database. The main idea is to get more out
of each shape in the database by considering smooth transitions
over their parts, not over themselves. The immediate advantage
of this idea is best shown with an example: the intermediate
shapes in the second row of Fig. 1 provide a smooth transition
for the left leg (green), but not for the right arm. The first row,
however, has a smooth transition for the right arm (brown) over

https://doi.org/10.1016/j.cad.2021.103027
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Fig. 1. Part-based interpolations over different paths (three rows at left) are merged into the final global data-driven interpolation (right). Treating the dataset
part-wise, the key idea of this paper, improves its richness, leading to better interpolation results, as shown in Section 5 and the supplementary video. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a different set of intermediate shapes. Similarly, we get a smooth
transition for the left arm from yet another set of intermediates,
namely row 3 (yellow). When the smooth transitions of the re-
maining parts are merged, a smooth overall transition is obtained
(right). Note that it is not possible to find an as smooth transition
between the same source–target shape pair if one treats them as
inseparable whole objects (Fig. 6 - rows 2 and 5) due to the lack
of model variety in our small database. Note also that the smooth
transitions of different parts are obtained through different sets of
intermediate shapes under this regime. To be able to consistently
merge these transitions, or equivalently interpolations, we intro-
duce a unified Bezier curve framework which parametrizes the
sets of intermediate shapes the same regardless of the differences
in their cardinalities. This unified merging operation is also based
on closed-form evaluations, which makes its speed close to that
of the simplest scheme in Eq. (1).

We note that the source code and the executables for the
method that we present in this paper, as well as our new articu-
lated hand database with fixed connectivity, are publicly available
at: http://ceng.metu.edu.tr/~ys/pubs/interp.zip.

A preliminary short version of this work was published in [2].
Compared with that version, we in this paper improve com-
parisons, evaluation, timing, and literature review as well as
algorithmic details such as dissimilarity measure and merging
step. We also add separate sections on further findings and
limitations as well as provide a video which can be watched at:
http://ceng.metu.edu.tr/~ys/pubs/interp.mp4.

2. Related work

We overview the literature on interpolation of the source and
target shape models in two categories: isolated and data-driven
methods, where the former deals with two input shapes without
using any intermediate shape support from a database and has
been studied quite extensively [3]. The latter is a relatively new
category.

The simplest mechanism to compute in-between shapes is the
linear interpolation which is likely to cause artifacts like vol-
ume loss and self-intersections in the presence of deformations.
Especially in large deformations these artifacts become intoler-
able [4]. To overcome this problem, [5] attempts to extend the
intrinsic shape parameters for interpolation to 3D shapes using
a local greedy approach. Differential coordinates [6], rotation-
invariant coordinates [7], and isometry-invariant intrinsic coordi-
nates [8] can be used for relatively robust interpolations, where
2

only the first one is able to work with non-manifold surfaces.
Kilian et al. [9], on the other hand, treat shapes as points in
Riemannian surfaces and interpolate along geodesics. [10] also
use geodesics in a shape space but works only with solid models.
Physically-based approach of [11] also works with solid tetrahe-
dral models. Chu and Lee [12] use nearly rigid parts and perform
interpolation in their gradient space. Solutions based on block-
coordinate descent [13] and BFGS method [14] also proved useful
for interpolating shapes between source–target pairs.

Instead of performing linear interpolation on absolute co-
ordinates, [15] and [16] linearly interpolate the edge lengths
and dihedral angles which are used in the solution of coordi-
nates. Reconstruction from edge lengths and dihedral angles to
coordinates, however, requires computationally expensive non-
linear optimization. [17] proposes an interpolation method that
accelerates non-linear solutions to real-time rates. Alternating
optimization techniques [18,19] use the as-rigid-as-possible de-
formation framework that keeps the local transformations close
to a rigid motion. [20] in this category decomposes the transfor-
mation matrices into rotational and non-rotational components
and interpolates them separately. Defining blending operations
on a spatio-structural graph composed of medial curves and
sheets made 3D interpolation under topology variations possi-
ble [21]. Concepts from continuum mechanics are also adapted
to the interpolation problem [22–25]. The global optimization for
splines in shape space, which is the main theme in this line of
works, is relatively inefficient. To address this issue, [26] converts
the complex minimization problem in shape space into a few
standard cubic spline fitting problems in the embedded feature
space. Smooth interpolation between concatenated animations,
instead of static models, is also achieved by geometric flows of
curves [27].

In addition to the 3D shape interpolation techniques discussed
thus far, there also exist planar shape interpolation methods that
are designed for two dimensional domains and can be extended
to the third dimension after some effort. One of the pioneering
examples in this area is Sederberg et al. [28], which interpolates
the intrinsic definitions of the initial and final 2D shapes. Alexa’s
method [29] generates as-rigid-as possible interpolation for 2D
images [30]. Extending this idea to 3D models requires consistent
tetrahedralization which is not trivial to obtain. Chien et al. [31]
propose a fast and theoretically sound interpolation method that
blends planar harmonic mappings represented in closed-form.
Previous version of this algorithm [32] provides guarantees on
local injectivity and a pointwise bound on conformal distortion

http://ceng.metu.edu.tr/~ys/pubs/interp.zip
http://ceng.metu.edu.tr/~ys/pubs/interp.mp4
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g

t the expense of a slow nonlinear optimization. Recently, the
nteractive planar interpolation method of [33] shows promising
esults under extreme deformation and topology change.

All of the methods given so far are inherently prone to artifacts
ike self-intersections, physically improbable movements, and
nnatural poses as they consider the input shape pair in isolation
ithout any prior knowledge on the shape family they come

rom. A data-driven, or equivalently example-based, approach can
lleviate this problem by enabling usage of existing shapes from
he same family, hence providing a prior knowledge. Observed
ecently on real-time elastic [34–36] and plastic [37] deforma-
ion applications, the first example to this paradigm on shape
nterpolation problem dates back to 2001 [38] in an interactive
ramework and we see variations that are much more closer
o our process [1,39,40]. Specifically, [39] employs a hybrid ap-
roach that combines vertex and edge shape spaces. [1] creates
model subspace from a given database and explore this using a
hortest path approach. [40] differs in the way it interpolates the
onsecutive shapes in the shortest path. While [1] imports the in-
erpolation procedure of [18] for this purpose, [40] uses rotation-
nvariant coordinates [7] which handles large-scale deformations
etter. We, on the other hand, employ a much simpler and faster
nterpolation procedure based on closed-form polynomial evalua-
ions in the Bezier framework. Averbuch-Elor et al. [41] propose a
ata-driven method for 2D image interpolation based on shortest
ath computation. Although database construction is the main
isadvantage of these data-driven methods, one can automate
his tedious process by employing articulated example-based
42,43] or articulated sketch-based [44] shape retrieval tech-
iques on large diverse databases such as SketchUp 3D Ware-
ouse.
Once sufficient amount of data is made available, deep neural

etworks such as [45,46] appear as valid alternatives to data-
riven methods. More recent learning-based approaches utilize
ierarchical graph network [47], two-level variational autoen-
oder network [48], or decomposer–composer network [49] for
earning structure-aware shape generation. They require consis-
ent part segmentation information throughout the diverse shape
ollection, which is not trivial to achieve. Besides, outputs of these
ethods are merely part-wise watertight whereas our method
roduces one global watertight mesh for the whole object. Two
onvolutional variational autoencoders are learned by [50] in
rder to encode source and target shapes to their latent spaces
ore compactly. Shapes are then interpolated in the learned

atent space.
Regardless of the two categories we discussed, i.e., isolated and

ata-driven methods, one first needs one-to-one correspondences
etween the shapes to be interpolated. This tedious process
an be automated with fully automatic correspondence algo-
ithms [51]. More recent deep learning methods, in particular,
ake the correspondence computation process more robust es-
ecially in the presence of diversity, noise, and partiality [52,
3]. In practice, however, artists deform a template mesh in its
est pose to different poses, which in turn preserves the fixed
onnectivity and hence the one-to-one correspondence between
hapes. In this work, we work on such databases that are already
n one-to-one correspondence. Note finally that, the utilization of
hortest paths on data-driven methods arises in other geometry
rocessing problems as well, e.g., shape correspondence over
ollections [54,55].

. The algorithm

Overview of our algorithm can be captured with the example
iven in the end of Section 1. We continue to provide details.
3

3.1. Input and output

Our input is a source shape and a target shape as well as a
database of potentially intermediate shapes from the same family.
All the shapes are discretized as mesh structures with vertices,
edges, and polygonal faces. We assume one-to-one correspon-
dence between all shape pairs is available. A manual segmenta-
tion of parts on one shape is transferred automatically to all other
shapes using the one-to-one correspondences.

Our output is a physically plausible and geometrically sound
smooth interpolation between the source shape and the target
shape. This is made possible by a data-driven approach which
utilizes our databases of potentially intermediate shapes.

3.2. Graph structure

We build a complete graph where each shape is a vertex, and
edges between shapes are weighted by the dissimilarity between
them, i.e., the more the connected shape pair is dissimilar, the
more their corresponding edge weight is. The main idea of using
a graph of this form is to replace a ‘‘bad’’ interpolation between
the source shape and the target shape by the composition of
‘‘good’’ interpolations on the shortest path between them. To this
end, we run Dijkstra’s shortest paths algorithm on our graph,
which returns the desired set of intermediate shapes in order.
For accuracy and efficiency purposes, we prune our graph prior
to Dijkstra by removing edges whose weights (Section 3.2.1) are
too large, i.e., greater than 1.5 times the average edge weight.
The rationale behind this action is to prevent a potential shortest
path that involves edges with outlier weights, or equivalently
shape pairs with potentially ‘‘bad’’ interpolations, e.g., the path
7+ 3+ 5+ 6+ 4+ 4 = 29 should be preferred over the shortest
path 4 + 19 + 3 + 2 = 28 that involves the outlier 19 (see also
Fig. 2). Removing outlier edges also accelerates Dijkstra whose
execution time depends on the number of edges.

3.2.1. Edge weights
We use the pairwise distance measure suggested by [1] as

our edge weights. In this measure, the dissimilarity between
two shape is computed by accumulating the Euclidean distances
between their corresponding vertices:

d(Si, Sj) =

n∑
k=1

∥vk
i − vk

j ∥
2 (2)

where vk
i is the kth vertex of the shape Si that is in correspondence

with vk
j from Sj. We visualize the behavior of this dissimilarity

measure by the multidimensional scaling technique [56], which
separates all shape pairs in 2D by the amount of dissimilarity
(Eq. (2)) between them (Fig. 2).

We make our dissimilarity measure rigid motion invariant by
a transformation-based preprocessing step performed before the
computation of Eq. (2). In this step, we resolve the translation and
rotation ambiguities optimally [57] based on the most dominant
parts, e.g., the torso segment for humans, in the guidance of
perfect correspondences. The resulting rigid transformation is
applied not only to the most dominant part but also to all of the
other parts, hence aligning the shapes globally. Note that at this
point individual parts do not necessarily, and are not likely to,
align perfectly, which is meaningful for the computation of part-
based dissimilarity scores while computing a separate graph for
each part (Section 4.1).

This fast and theoretically optimal preprocessing puts the
shapes into relatively correct orientations, e.g., coinciding center
of masses, except a few cases where the faces look at opposite
directions (back/front flip). In such cases, we manually rotate
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of our outlier edge removal idea: A→P→R→B is preferred over the shortest path A→P→B that involves an outlier edge connecting 2 dissimilar models P and B.
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ne shape 180 degrees. Note that [1] uses exactly the same
easure after a similar, but fully manual, preprocessing since

heir method requires the intermediate meshes to not only have
uitable shapes, but also be in suitable global orientations to be
seful.
We also tried several other weighting schemes. The method

escribed by Osada et al. [58] chose several vertex pairs and
omputes the Euclidean distances between them. Then, the his-
ograms of these values are compared using the chi-square
ethod. Another metric we used is to compute the distance of
everal vertices to the center of mass of the model. Then, the
istograms of these values are compared. These two methods did
ot significantly improve Eq. (2) based results.
We also used another family of experimental measures based

n linear interpolation. Specifically, for each shape pair, we com-
uted the linear interpolation for α = 0.5 (Eq. (1)). Then, we

used several methods to assess the quality of the interpolated
mesh. The weight would then be assigned inversely proportional
to that quality. We tried using total mesh volume, total triangle
area, and shape thickness quality metrics. However, most of the
time the interpolated model, especially if the input shape pair
differs significantly, were not reliable enough to run the quality
metrics. Collapsed edges, inverted triangles and tetrahedra, as
well as vertex positioning that damage the mesh integrity pre-
vented reliable comparisons. These measures are also much more
computationally expensive than Eq. (2).

4. Parts to be interpolated

As motivated in Section 1, the quality of data-driven interpola-
tion results are determined by the expressiveness of the database
in use. Using arbitrary databases, it is not possible to have all
the possible shape configurations necessary to create satisfactory
interpolation results. To overcome this problem, we apply the
following partitioning and use the resulting parts as inputs for
our graph structure.

We divide the SCAPE and FAUST models into 2, 5, and 9 parts
and the Hand models into 6 and 11 parts. Other datasets are
divided into 5, 7, 7, and 9 parts for the Cat, Horse, Dancer, and
Centaur, respectively (Fig. 3). Our algorithm is not sensitive to the
number of parts selected as one can see plausible interpolations
4

Fig. 3. Representative models of databases. Parts highlighted.

ith different numbers, e.g., Fig. 7-rows 1–3, Fig. 10-rows 1–2,
ig. 15-rows 3–5, and Fig. 16. The main motivation of going with
igid part segmentation is the availability of automatic algorithms
hat can produce them over mesh sequences [59,60]. Besides, it is
hown to be a good idea to treat rigid parts with fast interpolation
nd resort to slower non-linear interpolation only for the non-
igid connector joints [39]. Thanks to our data-driven approach,
hich is lacking in [39] that handles shapes in isolation, we are,
owever, not that strict about non-rigid joint separation, i.e., we
ove each vertex over its own closed-form Bezier curve (under
nified time parameterization) in order to achieve a similar effect.
s a matter of fact, our parts sometimes include rigid parts and
on-rigid joints at the same time (Fig. 7-rows 2–3, Fig. 10-row 2,
ig. 14-rows 1, 3, 5, Fig. 15-rows 4–5, and Fig. 16-rows 2, 4–5)
ithout any problems, which in turn enables the usage of many
utomatic semantic segmentation algorithms that may miss rigid
arts [61,62].
Consequently, setting the upper limit of the number of parts

arameter to the maximum rigid parts is the appropriate choice.
ividing already-rigid parts into further rigid parts is redundant
nd inefficient as the subparts from the same rigid region are
xpected to perform the same motion.

.1. Unified merging

Having obtained the parts to be interpolated, we treat them
eparately to create their own graphs (Section 3.2). Note that
he shapes are already globally aligned via [57] and parts are
ot aligned within themselves again before creating their graphs
ased on the dissimilarity scores (Eq. (2)). After creating the
raphs, we find the sequence for each part, i.e., the source part
nd the target part plus the intermediate parts on the shortest
ath from the source to the target.
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Fig. 4. Using Bezier curves for multiple paths (3 in this case) with different
lengths allows unified timing and smooth transition.

Given a shape sequence, we make use of Bezier curves to move
the involved vertices. Using the Bezier curve parameterization
below, we are able to interpolate between any number of shapes
in the sequence smoothly. This approximation is smoother than
interpolating through mesh after mesh on line segments with
sharp turns.

vk
result(α) =

m∑
i=0

vk
i bi,m(α), 0 ≤ α ≤ 1, 1 ≤ k ≤ n, α ∈ R, k ∈ N,

bi,m(α) =
(m
i

)
αi(1 − α)m−i

(3)

We use the standard De Casteljau’s algorithm to fit a Bezier
curve to each vertex in a mesh (Eq. (3)). Similar to the linear
interpolation formula (Eq. (1)), we consider each of the n ver-
tices separately and move them on their curves under unified
time parameterization α. vk

i denoting the kth vertex of the con-
rol/intermediate meshes in the computed shape sequence of size
+1, Eq. (3) gives us the position of the kth vertex at a given time
.
We apply the above method for each segmented part of a

odel separately. Each part has a different mesh sequence that
an have different lengths. Another benefit of using the above
entioned curve approach is that given a time α, it is possible

o compute vertex positions at the same time frame even with
ifferent mesh sequence lengths. This is illustrated in Fig. 4.
Since the source and target shapes are initially on top of each

ther, all their parts need to be translated after the interpolation.
o this end, we first fix the torso, i.e., the reference frame, and
hen translate the center of mass of the limb interface to the cen-
er of the corresponding torso interface, hence allowing the meet-
ng of the part interfaces. We provide Fig. 5 that demonstrates the
hapes before and after these translations. Translation itself is not
nough to obtain smoothness at the boundaries between parts of
he merged models. To remedy this problem, we apply multiple
asses of Taubin’s fairing [63] only to the boundary region be-
ween the parts, which we call local smoothing (λ = 0.6307, µ =

0.6732). We empirically decide on 20 passes, which is used in
ll experiments. Notice that a global smoothing without special
onsideration on the boundaries would over-smooth the mesh
ith the same number of passes. We, consequently, promote

ocal smoothing over global smoothing (Fig. 5). Local smoothing
s stopped automatically when the total displacement over the
ffected region is sufficiently small.
We close this section by discussing two potential issues about

sing Bezier curves. First, although interpolating positions using
ezier has a potential to break rigidity, i.e., forearm not straight
nymore, we have not observed this shortcoming thanks to our
art-based analysis that highly exploits the dataset. We, in other
ords, have always ended up with part poses that are suffi-

iently similar that this issue has never arisen. Second, since

5

Fig. 5. Leftmost model shows the result of the part-based approach before
aligning all the parts, i.e., the fixed torso and the limbs that are waiting to be
translated. Middle left model shows the alignment result after the translations.
Although it provides correct placements, boundaries between parts are not
smooth (zoomed elbow). In the middle right model, the result of global smooth-
ing is shown. Although it provides smooth boundaries between interpolated
parts, it also loses the surface details (zoomed face). In the rightmost model,
the result of local smoothing applied only to the boundary regions are shown.
It provides smooth boundaries (zoomed elbow) yet preserves surface details
(zoomed face).

Bezier curves do not necessarily pass through the interior control
points, some of our intermediate shapes has the potential to be
less influential on the result. Our part-based analysis utilizing
enough variety of part poses has again solved this issue naturally.
To validate this, we have replaced the Bezier curve framework
with the Catmull–Rom spline framework which is guaranteed
to pass through the intermediate shapes. We have not seen a
significant difference between the results of these two paramet-
ric curve frameworks and consequently stuck with the more
common Bezier framework.

5. Experimental results

We tested the performance of our data-driven shape interpo-
lation algorithm on databases of articulated objects with non-
uniform sampling. The first database is a reconstructed pose
sequence of a human actor from the SCAPE benchmark [64],
which contains 71 models, whereas the second one is our new
Hand database with 31 models. The other databases consist of
27 Dancer models [65], 11 Horse models [66], 10 Cat mod-
els [66], and 6 Centaur models [4]. Despite the small sizes of these
databases, our part-based solution achieves visually pleasing and
natural interpolations between shape pairs, as demonstrated by
the following figures and the supplementary video at http://
ceng.metu.edu.tr/~ys/pubs/interp.mp4. We provide quantitative
evaluations as well.

In order to emphasize our contribution, we make comparisons
with five related methods that we call M1, M2, M3, M4, and
M5. In M1, we maintain the data-driven paradigm by computing
the Bezier approximation over the computed shortest paths. The
important difference here is that the shapes are considered as a
whole unlike our part-based consideration. M1 can also be con-
sidered as a simplified variant of [1] as the framework is almost
identical except that [18]-based interpolation along the path is re-
placed here with a Bezier-based interpolation. In M2, on the other
hand, we perform direct linear interpolation (Eq. (1)) between
the source and the target, which is not data-driven at all. M3 is
the state-of-the-art data-driven shape interpolation method [40].
We add a recent deep learning method [50] to our test suite
under the name of M4. Finally, we use as-rigid-as-possible surface
morphing [20] as M5.

We demonstrate our performance not only for pose interpola-
tions but also for form interpolations using the inter-subject pairs
from the FAUST dataset [67]. Also, a mild data augmentation is
shown to improve our results even further (Section 5.3).

http://ceng.metu.edu.tr/~ys/pubs/interp.mp4
http://ceng.metu.edu.tr/~ys/pubs/interp.mp4
http://ceng.metu.edu.tr/~ys/pubs/interp.mp4
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Fig. 6. Our results on two different pairs (rows 1 and 4) outperform the results
f M1 (rows 2 and 5), M2 (row 3), and M5 (row 6). Notice the zoomed artifacts
f M1, M2, and M5.

.1. Qualitative evaluations

Our first example is from the SCAPE database (Fig. 6). Given
he leftmost source shape and the rightmost target shape, our
ata-driven algorithm finds 3 different shortest paths for three
ifferent parts, namely the right and left arms (below the elbow),
nd the left leg (below the knee), as demonstrated in Fig. 1. The
irst row in Fig. 6 shows the unified merging of all 9 parts and
ence our promoted result, which is better than the methods
1 and M2. Not surprisingly, we outperform M2 which is not
llowed to use additional data at all. To understand the reason of
ur success over data-driven M1, one may observe the interme-
iate shapes in Fig. 1 whose uncolored parts behave completely
ifferently, e.g., sudden jumps in the left arm of row 1. As a
atter of fact, it is difficult to find global inseparable shapes that
ehave in tune at once. This motivates our part-based treatment
hose tuning can be arranged more easily, especially for small
ize databases. A significantly larger database may upgrade the
erformance of M1 in the expense of increased computational
ime. We append a different SCAPE result to Fig. 6, this time in
6

Fig. 7. Our results with changing number of parts (rows 1–3) in comparison
with M1 (row 4).

comparison with M1 and M5. We actually do not display any
further M2 results as it is well known that linear interpolation
between vertex positions fails to recover rotational motions.

We provide further results on SCAPE in Fig. 7. First three rows
show our results with 9, 5, and 2 parts, respectively, followed
by the results of M1 and M2. Our natural resulting poses can be
compared with M1 in the last row. In M1, the middle figures
show a model that has both feet in the air. Since the dataset
only has models that have at least one foot on the ground, our
part-based data-driven interpolation results on the other rows are
more consistent with the models’ physical properties. It can be
observed that to switch feet, first it is necessary to put one foot
on floor, then lift the other one.

Results of M4 and M5 on these pairs and other ones are
compared with our method in Fig. 8. M4 is quite fast, e.g., taking
10 ms to generate a shape from the latent code, which is about 50
times faster than our 507.4 ms generation. We should, however,
note the 30–45 min training time for each of their networks. M4
also deals with a significant number of parameters, 43 200324
floats, whereas our method is training- and parameter-free.

M5, on the other hand, generally runs as accurate as our
method but takes 2.5 times longer, 1.3 s per frame. It also fails
when the largest rotation angle is a little larger than π since the
quaternion interpolation for rotations cannot distinguish angles
larger or smaller than π . Co-author of [50] kindly executed his
program (M4), and we executed the public code of [20] (M5).

For comparison with M3, the first author of [40] kindly ex-
ecuted his program on some of our test data, namely SCAPE
and Horse. M3 achieves significant improvement over [1], and
consequently M2, by finding the optimized interpolation path in
the global continuous space. While producing visually appealing
results, this continuous space analysis causes redundant moves
as demonstrated in Fig. 9 and in our accompanying video. Our
discrete space analysis based method produces more preferable

results in terms of natural movement. This redundancy issue is
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Fig. 8. Three different executions of M4 (top) and M5 (bottom). For our
corresponding results, please refer to Fig. 12-row 1 at right, Figs. 7, 6-row 1,
and our accompanying video.

also reported in [45] which alleviates the problem using a deep
neural net.

We created a new database of hands, another popular ar-
ticulated object like humans. This Hand database is created by
deforming a single hand model using the Blender software, pre-
serving the fixed connectivity. The hand gestures are based on
the images taken from the database for Hand Gesture Recognition
7

Fig. 9. Results of M3 are visually appealing and has no geometric artifacts. They
are, however, likely to exhibit redundant moves, e.g., left hand coming down and
up again, or left leg unbending and bending again. Our corresponding results
with no such redundancies can be found at Fig. 6 - row 1 and Fig. 12 - row 1
at right as well as the accompanying video.

Fig. 10. Our results with changing number of parts (rows 1–2) in comparison
with M1 (row 3) and M5 (row 4). Notice the highlighted artifacts of M1 and
M5.

(HGR) which contains Polish and American sign language ges-
tures. Similar to Fig. 7, we show our results in Fig. 10 with varying
number of parts. Another result set is depicted in Fig. 11 where
we also demonstrate the selected intermediate shapes from the
dataset in pink.

We finish our qualitative evaluations with four other artic-
ulated datasets: Dancer, Cat, Horse, and Centaur (Fig. 13 and
Fig. 14), where visually appealing results are obtained.

5.2. Quantitative evaluations

We involve quantitative evaluations in terms of timing and
accuracy.

The execution times of our method and the compared meth-
ods on a computer with an Intel Core i7 2.40 GHz CPU are shown
in Table 1. Increasing the number of parts increases the amount
of time to produce our interpolation results linearly. Note that
for our method, Edge Weights computation is done only once
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Fig. 11. Intermediate models in pink (top) guide the data-driven interpolation
M1 (middle). As-rigid-as-possible morphing M5 does not require the pink
models to operate (bottom).

in an offline preprocessing stage and then all queries can be
answered very quickly without taking that time into account. For
M1, we also need the Edge Weights part only once just in the
preprocessing stage.

Timings are consistent with the asymptotic time complexities
s there are O(m2) model pairs to compute Edge Weights, where

m is the number of models. Path Computations require Dijkstra
processing over our graph structure in O(m logm) time. Finally,
e compute positions of all n vertices over O(m) models using
he closed Bezier Computation in Eq. (3), hence O(mn) more time.
otal asymptotic time complexity is O(m2n), which is the overall
ost of the most dominant Edge Weights preprocessing action.
In order to numerically assess the geometric stability of our

ethod, we have computed the volume change in the inter-
olated shapes. We also count the number of self-intersected
lements to measure the deviation from physical plausibility.
For the volume change metric, we first tetrahedralize the

ource and target shapes as well as the interpolated shapes
I1, I2, .., Im} via [68] that is robust to geometric defects. We then
ompute the desired metric V via

oli =

∑
|vol(t)|, V =

1
a
1
m

m∑
|vol∗ − voli| (4)
t∈Ii i=1

8

Fig. 13. For each of the three databases, our results (top) are shown in
comparison with M1 (bottom). Notice volume loss as well as the highlighted
artifacts in M1.

where vol(t) measures the volume of tetrahedron t , and vol∗ is
the optimal volume obtained by averaging the total volumes of
the input source and target shapes. Division by average source
tetrahedron volume a helps us interpret the results geometrically,
i.e., V measures the change in volume in terms of a multiplica-
tive factor of an average healthy tetrahedron volume, which is
about a human nose volume. The comparative results are given
in Table 2, which is complemented here with M5’s information
due to lack of space: V = [10 18 10 6 14 19 8 10]⊤ and P =

0.5 1.4 0.4 0.2 0.6 1.0 0.4 0.5]⊤.
For the counting metric, we count the number of triangles that

intersect the mesh and then use the ratio between this number
and the number of all triangles in percentage format P , e.g., 50
means half of the triangles are marked as self-intersecting. In
a plausible motion where the shape does not touch itself, this
value becomes 0. Most of the non-zero values in Table 2 can be
explained by the presence of input models that are already self-
intersecting, e.g., the crouching model around (0.23,0.02) in Fig. 2.
Our interpolation scheme would want to reach these models in
case they are the target shapes or the intermediate path shapes.
Fig. 12. Spherical linear interpolation (SLERP) of quaternions (left bottom) produces a rotation with more uniform velocity than LERP does (left top) and hence is
preferred for this test. Note that, SLERP to the quaternions are applied over a Bezier curve, not separately. (Middle and right) Quaternion interpolation, however, is
prone to errors at joints (bottom rows) when acting on multiple parts, a problem we avoid by our original algorithm (top rows). Average V and P values over 20
CAPE runs are 53 and 0.8, respectively, which are worse than the corresponding entries of our original algorithm (Table 2).
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tatistics of the databases and average running times in milliseconds. Our solution on Dancer, for instance, is computed in 229 (computation of all edge weights via
q. (2) — one-time preprocessing) + 44.9 (computation of the shortest path via Dijkstra’s algorithm) + 17.3 (computation of vertex positions via closed-form Bezier)
291.2 ms ≈ 0.29 s. SCAPE-A denotes SCAPE Augmented (Section 5.3).

Dataset # Vertices # Models # Parts Edge weights Path computations Bezier computations M1 M2 M5

SCAPE 12500 71 1 1049 16.1 3.7 19.8 1.1 1300
SCAPE 12500 71 2 1862 33.9 3.9
SCAPE 12500 71 5 2108 155.2 19.1
SCAPE 12500 71 9 2126 470.7 36.7

Hand 1515 31 1 31 3.7 0.3 4 0.2 149
Hand 1515 31 6 62 45.2 1.8
Hand 1515 31 11 70 133.5 11.4

Cat 7207 10 1 15 2.5 1.9 4.4 0.6 757
Cat 7207 10 5 31 8.8 3.3

Horse 8431 11 1 23 0.8 0.6 1.4 0.3 890
Horse 8431 11 7 36 9.1 7.2

Dancer 9971 27 1 122 3.1 1.8 4.9 0.4 1068
Dancer 9971 27 7 229 44.9 17.3

Centaur 15768 6 1 28 0.2 1.9 2.1 0.03 1700
Centaur 15768 6 9 71 3.8 19.9

FAUST 6890 100 1 1210 24.65 2.9 27.55 0.5 713
FAUST 6890 100 2 1982 50.88 3.3
FAUST 6890 100 5 2094 210.31 22.7
FAUST 6890 100 9 2116 755.3 48.7

SCAPE-A 12500 200 1 8687 144.3 5.5 149.8 1 1300
SCAPE-A 12500 200 9 16108 4867 119.5
Table 2
Quantitative evaluation of our method in comparison with others. An entry of
V = 9 means the shape loses about 9 human noses in volume on average
ver the computed sequence. Similarly, P gives the average percentage of
riangles that intersect the mesh through the sequence. SCAPE-A denotes SCAPE
ugmented (Section 5.3).
Dataset V P

Our M1 M2 M3 Our M1 M2 M3

SCAPE 9 114 248 5 0.4 0.9 0.9 0.4
Hand 17 125 260 n/a 1.2 1.3 2.5 n/a
Cat 10 122 249 n/a 0.5 0.9 2.1 n/a
Horse 7 82 167 3 0.2 0.6 0.8 0.2
Dancer 12 68 193 n/a 0.6 1.1 1.9 n/a
Centaur 21 187 297 n/a 1.3 2.2 2.9 n/a
FAUST 8 92 205 n/a 0.3 0.7 0.9 n/a
SCAPE-A 4 76 248 n/a 0.2 0.5 0.9 n/a

Please note that, our quantitative comparisons based on V in
able 2 are meaningful especially when the difference between
he entries of the same row is high, e.g., 9 vs. 248, but not 9 vs.
. This is due to the unit in use: the size of a nose which is a very
mall portion compared to the whole shape size. The main part
hat favors our method over geometrically-sound M3 is our more
atural movement that avoids redundancies. This fact cannot be
aptured by Table 2, but it is rather evident in the accompanying
ideo, Fig. 6 - row 1, and Fig. 12 - row 1 at right. We finally
ote that the quantitative results for a given dataset with varying
umber of parts are nearly identical. The ones reported in Table 2
orrespond to 9-part SCAPE and FAUST, and 11-part Hand pairs.
ee Section 4 for the number of parts in other datasets.

.3. Further findings

We finally provide three additional findings obtained in our
ethod.

.3.1. Form interpolation
All examples thus far demonstrate our capability to deform

rticulated poses from one to another, which is already a useful
eature, e.g., for motion capture animations. Although there is
heoretically no issue that prevents our method from working
9

on more heterogeneous inputs, it is unlikely to find such sets
in correspondence. Without correspondence, it would also be
challenging or tedious to segment each model. This is indeed a
limitation inherent to all data-driven methods, e.g., setting up
the data to morph from a cat to a giraffe is not trivial for these
methods.

We find a heterogeneous dataset that is in vertex-to-vertex
correspondence, namely FAUST [67] which has 100 high-
resolution scans of 10 human actors and a low-resolution (6890
vertices) template model registered to each of these scans. We
are then able to verify empirically that our algorithm morphs not
only poses but also forms (turning from one person to another)
as shown in Table 2, Fig. 15, and video. We also verify that
our method is not very sensitive to the number of parts in use
(Fig. 16).

5.3.2. Data augmentation
We manage to obtain high utilization from small databases

thanks to our part-based treatment. This high utilization already
gives us stable interpolation results. We, however, can improve
our results even further by populating the small databases with
the results of the original algorithm, hence in a fully-automatic
and fast manner. With the augmented database, part-based solu-
tion works in an even more flexible way because higher number
of parts made available provides more alternatives and flex-
ibility for path creation, which in turn brings more accuracy
(Table 2, Fig. 17, Fig. 18, and video). Note that, this augmentation
is achieved due to the capability of our original algorithm to work
on very small databases.

To perform the population for augmentation, we run our part-
based data-driven interpolation algorithm over 100 random pairs
and sample 10 new meshes from each computed interpolation
sequence. We only admit a subset of these mesh samples to the
augmented database based on our volume loss criterion V in
Section 5.2. Namely, meshes with the smallest values are chosen.

5.3.3. Quaternions vs. Bezier paths
Instead of creating a Bezier path for each vertex, we interpo-

late the optimal rotation of each part. To this end, we convert the
optimal rotation matrices into quaternions and perform spherical
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Fig. 14. Results on the Centaur dataset for three different shape pairs. Our result
is followed by M1 (notice the highlighted artifacts) in the first 6 rows. The last
row is by M5, which is as accurate as our interpolation but took 1.7 s for frame
generation, much slower than our 23.7 ms.

linear interpolation (Fig. 12 — left bottom). Although we could
get valid results by first interpolating quaternion qi−1 and qi
nd then separately qi and qi+1, we would then end up with
non-differentiable curve with potential smoothness problems.
o address this issue, we build a Bezier curve of quaternions
s described in [69,70]. This alternative approach is, however,
till outperformed by our original vertex position interpolation
roposal (Fig. 12 — middle and right) because the rigid parts
btained from different models may possess slight differences,
oticeable especially around the joints — note that quaternion
olution is only valid when the parts are rigidly segmented. This
eans that the parts will not be matched perfectly after we apply
single rotation followed by the same amount of smoothing. Con-
equently, our current vertex-based movement performs better
rom this groupwise movement.

. Limitations

Although we rarely experience during our tests, our method
ay fail in terms of geometric stability and physical plausibility.
10
Fig. 15. Three results depicting morphs of poses and forms. We do the last pair
(3rd row) with changing number of parts to demonstrate the insensitivity of
our method to this parameter.

The former is possible especially when the database is so sparse
that we cannot find sufficiently similar part poses, a problem al-
leviated by our automatic data augmentation (Section 5.3.2). The
other alternative to reduce such geometric artifacts is interpolat-
ing the rotation of each rigid segment instead of interpolating
vertices one-by-one via the Bezier basis (Section 5.3.3). This al-
ternative, however, did not turn out to be sufficiently effective
because treating all vertices within the rigid part the same is
problematic, considering that the same part on different models
may have slight differences. We show results where geometric
stability problem arises in the form of collapses (Fig. 17) and
interpenetration (Fig. 18), which are both fixed by applying our
automatic augmentation (Section 5.3.2) as demonstrated within
the same figures. The physical plausibility problem, on the other
hand, exists as the parts are currently unaware of each other,
e.g., because the forearm does not know about the head, it may
pass through it, similar to the case in (Fig. 18). Note that, barrier-
or projection-based solutions in non-data-driven methods [17,
24] may alleviate this self-intersection problem. These compu-
tationally expensive solutions can, however, be replaced with
less costly data-driven solutions such as establishing awareness
between parts, which we intend to do in future. Finally, our
method is heavily relied on segmentation results, which is cur-
rently not an issue at all as we transfer a single manual segmen-
tation to all other database model consistently through existing
correspondence information. For a fully automatic pipeline, cor-

respondences must be computed accurately in order to obtain
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Fig. 16. Our interpolation results do not change significantly as the number of
parts varies. 9-part version of the last row can be found in Fig. 15-row 1.

Fig. 17. Part-based data-driven interpolations obtained at α = 0.5 using the
riginal (pink) and augmented (multicolor) SCAPE. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

he required consistent segmentation throughout the database.
lternatively, individual segmentations that are consistent over
he database must be computed.

. Conclusion and future work

Interpolating parts is shown to be a good idea to cover the
hape space more densely, which in turn produces promising
11
Fig. 18. Interpenetration issue observed in our result (top) is fixed when the
same method runs over the augmented database (bottom).

results with even small databases. Thanks to our part-based so-
lution that highly exploits the information in the relatively small
databases, we obtain plausible smooth interpolations between
the source and target shape pairs in a data-driven fashion. Our
unified merging scheme enables the gathering of different part-
level interpolations into one consistent global interpolation. Our
algorithm is also quite fast and reproducible since it consists
mainly of easy-to-implement blocks such as Dijkstra, Taubin,
and De Casteljau methods. Extensive evaluation involving fig-
ures, comparisons, accompanying video, and quantification met-
rics validated the algorithm for pose interpolations as well as
form interpolations. Original algorithm is also proved useful in
populating the small database it is run on, effectively improving
the performance of the new runs on such augmented databases.

An interesting future work is to establish awareness between
the parts so as to improve plausibility. We also plan to evaluate
the performance of our form morphing capability further. Our
current experimentation is not as comprehensive as our pose
morphing experiments due to lack of correspondence-equipped
heterogeneous databases for this task. We may consider creat-
ing our own using an automatic correspondence computation
method for such databases.
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